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Abstract 
 

Financial institutions have a large amount of data on their borrowers, which can be used to predict the 
probability of borrowers defaulting their loan or not. Some of the models that have been used to predict 
individual loan defaults include linear discriminant analysis models and extreme value theory models. 
These models are parametric in nature since they assume that the response being investigated takes a 
particular functional form. However, there is a possibility that the functional form used to estimate the 
response is very different from the actual functional form of the response. The purpose of this research 
was to analyze individual loan defaults in Kenya using the logistic regression model. The data used in this 
study was obtained from equity bank of Kenya for the period between 2006 to 2016. A random sample of 
1000 loan applicants whose loans had been approved by equity bank of Kenya during this period was 
obtained. Data obtained was on the credit history, purpose of the loan, loan amount, nature of the saving 
account, employment status, sex of the applicant, age of the applicant, security used when acquiring the 
loan and the area of residence of the applicant (rural or urban). This study employed a quantitative 
research design, it deals with individual loans defaults as group characteristics of a borrower. The data 
was pre-processed by seeding using R- Software and then split into training dataset and test data set. The 
train data was used to train the logistic regression model by employing Supervised machine learning 
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approach. The R-statistical software was used for the analysis of the data. The test data set was used to do 
cross-validation of the developed logistic model which later was used for analysis prediction of individual 
loan defaults. This study focused on the analysis of individual loan defaults in Kenya using the logistic 
regression model in Machine learning. The logistic regression model predicted 303 defaults from train 
data set, 122 non-defaults and misclassified loans were 56 and 69. The model had an accuracy of 0.7727 
with the train data and 0.7333 with the test data. The logistic regression model showed a precision of 
0.8440 and 0.8244 with the train and test data respectively. The performance of the model with both the 
train and test data was illustrated using a plot of train errors and test errors against sample size on the 
same axes. The plot showed that the performance of the model increases with an increase in sample size. 
The study recommended the use of logistic regression in conjunction with supervised machine learning 
approach in loan default prediction in financial institutions and also more research should be carried out 
on ensemble methods of loan defaults prediction in order to increase the prediction accuracy. 
 

 
Keywords: Loan defaults; loan default prediction; logistic regression model; Kenya. 
 

1 Introduction 
 
Loan defaults in Kenya are on the rise and this is a critical source of economic strain. For this reason, these 
defaults must be controlled and monitored [1]. The main importance of the financial institutions, particularly 
banks are to safeguard the money kept by their clients and make it accessible when need arises. They also 
advance loans to their customers [2]. There has been a growing concern about the relative regression on 
loans performance in commercial banks in Kenya [3]. 
 

 
Fig. 1. Total Non-performing loans in the bank industry (Billion Shilling). 

Source: CBK, 2015 
 
In Kenya, several predictive models have been used to predict loan defaults. These models include; linear 
discriminant analysis, logistic regression models and generalized extreme value regression models. All these 
models are parametric since they assume the response being investigated takes a particular functional form. 
Logistic regression model has been used to analyze default risk. [4] applied logit model as the basis for 
developing financial ratios and probabilistic prediction of bankruptcy. The results showed that coefficient 
estimates for this model were efficient in the use of relatively small samples because it overcomes problems 
arising from linear regression [5]. [6] emphasized that credit risk decisions are key determinants for the 
success of financial institutions because of huge losses that result from wrong decisions. Hence, credit risk 
evaluation is essential before making any lending decision [7]. Due to the significance of credit risk, a 
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number of studies have proposed embracing statistical modelling in banks to improve their risk assessment 
models and hence increase the prediction accuracy of existing models [8,9,10,11,12,13,14]. Artificial Neural 
Networks, genetic algorithms, genetic programming, and some hybrid models have been used to evaluate 
credit risk with promising results in terms of performance accuracy. These models have several drawbacks: 
(1) lack of explanatory power; (2) reliance on the restrictive assumptions of statistical techniques; and (3) 
numerous variables, which result in multiple dimensions and complex data [15]. The hybrid models were 
found to perform better in terms of prediction accuracy and precision.  
 
Survival analysis models have also been proposed to monitor credit risk modelling, such as [16], followed 
by [17,18,19] and concluded by [20]. These studies compared the methods on the development sample and 
on random cross-validation samples. From this point of view, it has been shown by [21] and [22], that the 
survival analysis models have a similar performance to the logistic regression in terms of precision. Classical 
linear technique models have also been employed to predict loan defaults [23]. They fitted a decision rule 
based on the area under the curve, as well as root-mean-square error criteria with other non-parametric 
models classified as machine learning and deep learning, this includes, a random forest model, a gradient 
boosting machine and four deep learning models. The Ordinary Least Square (OLS) regression and 
calibrated Beta distributions for statistical inference have also been used to monitor the credit worthiness of 
a client [24]. The OLS regression model is simple with the normality assumption, which would not capture 
the typical features of loan defaults. Beta distributions offer a simple, parsimonious way of capturing a very 
broad range of distributional shapes over the unit interval [25]. 
 
Artificial neural network (ANN) has also been applied on credit prediction [26]. It is a stylish credit 
prediction model that draws attention from numerous modelers with its high forecast accuracy, from the past 
years. Although ANN has several flaws, for instance, a propensity to become trapped in a local optimum, 
short of descriptive power, expensive training time, overfitting, and requiring a huge amount of instances 
learning. These have been concurred by the introduction of Support Vector Machine [27]. It is a 
comparatively new machine learning method and gained more popularity due to many gorgeous features and 
outstanding generalization performance on extensive applications. Support vector machine is designed to 
reduce structural risk by reducing the upper bound of the generalization error rather than the training error, 
hence solving the problem of overfitting. Support vector machine also solves linearly constrained quadratic 
programming problems by training it so that the solution is always distinctive and globally optimal, unlike 
neural networks' training which requires nonlinear optimization [28]. [29] used least square Support Vector 
Machine (SVM) with several parametric models for credit scoring and drew the conclusion that K-nearest 
neighbour outperformed on traditional measures of correctly classified samples, diagonal quadratic 
discriminant analysis on specificity and SVM on sensitivity for UK database. Voting ensemble outperformed 
on accuracy, diagonal linear discriminant analysis on specificity, neural network on sensitivity for German 
credit database. [30] focused on US retail market credit prediction; using four methodologies with SVM, 
they concluded that different models had different classification abilities on the area under the receiver 
operating characteristics curve. [15] compared SVM with some traditional statistical methods and he found 
out that the rankings of the models differ on overall accuracy, precision, true positive rate and true negative 
rate. The analogous study did by [31] on several logit models with different categories of explanatory 
variables using Gini index and Kolmogorov-Smirnov statistic as a measure of discriminatory power and 
concurred with the findings. [32] used least squares SVM with a Bayesian kernel to derive classifier for 
corporate bankruptcy and found out that there was no significant difference among Support vector machine, 
logistic regression and discriminant analysis. [33] used SVM with other two algorithms for credit rating 
analysis, and the results showed that SVM performs well on rating distributions and neural network 
approaches outperform SVM on reliability. 
 
Logistic regression model had not been used to analyze individual loan defaults in Kenya. Logistic 
regression model is simple and flexible in terms of analysis and classification of loan defaults. This 
statistical analysis of individual loan defaults in Kenya was done by employing statistical learning in R 
under supervised machine learning algorithm. 
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This study used R-Statistical software [34] to analyze secondary data obtained from Equity bank for a period 
between 2006-2016. Probabilities of loan defaults were determined by using logistic regression model in 
machine learning.  
 

2 Methodology 
 
This study was carried out at Equity bank headquarters. This study employed a mixed method research 
design. This design adopts both quantitative and qualitative approaches or methods in a single study [35]. 
The study is not restricted by the use of traditional approaches to collect data but guided by foundation of 
enquiry that underlies the research activity. The data that was used for this study was obtained from the 
Equity Bank of Kenya headquarters from 2006-2016. This enabled the monitoring of long-term loans. The 
data were obtained for all applicants whose loans were approved at the Equity bank during this period. The 
sample size for this research represented 30 percent (30%) of the data collected from equity bank of Kenya. 
A stratified random sampling was used. According to [36], stratified random sampling achieves desired 
representation from various subgroups in the population. Data analysis was done using logistic regression 
model in R statistical software [34] under a supervised machine learning approach. The first step was to 
filter the data by cleaning it through seeding in R-statistical software. The data was then coded for easy 
analysis using the R- software. The coding involved identification of a non-performing loan or a loan default 
with a value 1 and a performing loan with a value 0. Equivalent number of dummy variables were created 
for the purposes of coding independent variables. The clean data was then used for analysis and generation 
of descriptive statistics and also fit the models. 
 

This study fitted the logistic regression model. This model was implemented by machine learning technique 
using the R software [34]. In fitting the model by machine learning, the data set was divided into a training 
set and a testing set. The training set had a sample of 700 applicants. The machine was trained to divide the 
sample into seven sub samples. That is, a sample of 100, 200, 300, 400, 500, 600 and 700. The logistic 
regression model was fitted using each subsample and tests the behavior of the model obtained against the 
test data in each case. The reason for this was to help in observing whether increasing the sample size 
increased the performance of the model. The behavior of the model with both the test data was shown using 
a train error and test error curves against the sample size. This postulates the effect of the size of the sample 
on the effectiveness and performance of the models generated. 
 

3 Results and Discussion 
 
The data used to generate results in this study had a sample of 1000 applicants obtained from a data of 
10,000 applicants whose loans were approved for equity bank of Kenya for the years 2006-2016. Eleven 
(11) variables were considered for the analysis of the data. Data visualization was done using R-statistical 
software. Logistic regression model was fitted using the data under supervised machine learning approach. 
 

Analysis of loan performance showed that 70% of the individual loans approved by equity bank were 
performing and 30% were non-performing (Fig. 2). The loans performing meant that the loans have been 
repaid in full or the repayment schedule was being adhered to by the borrowers. The non-performing loans 
were those that had not been serviced in 90 days. The percentages of non-performing loans across the world 
between the years 2000-2016 were consistently lower than the performing loans [37]. The general over-view 
is that most individuals that apply for loans do repay. This agrees with the World Bank on Kenyan Report 
for the years 2006-2014 which states that the percentage of non-performing loans is generally lower 
compared to the percentage of performing loans. Credit Bank of Kenya credit survey report (October-
December, 2017) also concurs with this study, it reported that the percentage of non-performing loans is 
lower than that of performing loans. Financial institutions have been employing the credit information 
sharing system in order to determine the creditworthiness of the borrowers before approving the credit, this 
system has drastically reduced the number of non-performing loans. Some of the reasons that may make 
individuals default their loans are such as divorce, sickness which may lead to an inability to work, loss of a 
job, failed business among others [38]. 
 



Fig. 2. Summary of loan performance at Equity bank between 2006
 

This study found out that the average amount of money that the individuals applied for in terms of loans was 
ksh 327124.80 with a standard deviation of 282275.2 while the average duration was 20.9 months with a 
standard deviation of 1.06 (Table 1). The ave
deviation of 20.08 while the average number of credits that the individuals had were 1.41 with a standard 
error of 0.58 (Table 1). The median amount of money borrowed by the applicants was ksh 231,9
median duration was 18 months. The median age of the applicants was 25 years while the median number of 
credits that the individuals had was 1 (Table 1). The skewness of the amount of loan was 1.94 while the 
kurtosis for duration was 1.09. The kurtosis for amount of loan applied was 4.25 while the one for duration 
was 0.9. The maximum amount of money applied for by an individual during the study period was ksh 
184,400 while the minimum amount applied was ksh 25,000. The maximum duration used to
was 72 months while the minimum duration was 4 months (Table 1). The study shows that most financial 
institutions worldwide offer individual loans of up to ksh 5,000,000 though the amount can be higher 
depending on the value of security that 
scheduled in months. The longer a person takes to pay a personal loan, the less the monthly payment but that 
means that the interest paid on the loan will be higher compared to if the loan was 
[39]. 
 

Table 1. Summary statistics of loans borrowed from equity between 2006

 Amount

Mean 327124.8

Standard Deviation 282275.2

Median 231950

Skewness 1.94

Kurtosis 4.25

Maximum 1842400

Minimum 25000
 

The distribution of the amount borrowed showed that most individuals borrowed loan of up to ksh 500,000 
(Fig. 3). For an individual to acquire a loan, banks and other financial institutions require collateral. This 
could be the reason of having fewer persons borrowing loans of beyond ksh 1 million. As also observed on 
the purposes of the loans, individual’s purpo
borrowing. 
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Summary statistics of loans borrowed from equity between 2006-2016
 

Amount Duration Age Number of credits

327124.8 20.9 28.9 1.41 

282275.2 12.06 20.08 0.58 

231950 18 25 1 

1.94 1.09 1.09 1.27 

4.25 0.9 0.9 1.58 

1842400 72 72 4 

25000 4 4 1 

The distribution of the amount borrowed showed that most individuals borrowed loan of up to ksh 500,000 
3). For an individual to acquire a loan, banks and other financial institutions require collateral. This 

could be the reason of having fewer persons borrowing loans of beyond ksh 1 million. As also observed on 
the purposes of the loans, individual’s purposes may also not be very demanding to require huge amount of 
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median duration was 18 months. The median age of the applicants was 25 years while the median number of 
credits that the individuals had was 1 (Table 1). The skewness of the amount of loan was 1.94 while the 

kurtosis for amount of loan applied was 4.25 while the one for duration 
was 0.9. The maximum amount of money applied for by an individual during the study period was ksh 
184,400 while the minimum amount applied was ksh 25,000. The maximum duration used to repay a loan 
was 72 months while the minimum duration was 4 months (Table 1). The study shows that most financial 
institutions worldwide offer individual loans of up to ksh 5,000,000 though the amount can be higher 
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Fig. 3. Distribution of amount of loan borrowed from Equity bank between 2006-2016 
 

Individuals who had acquired a loan for the purpose of financing education showed the highest percentage 
(44%) of loan defaults (Fig. 4). This was followed by those whose purpose of the loan was not classified 
with a percentage of 42%. The individual loans that showed the best performance were loans acquired by 
people whose purpose was retraining. Retraining meant to acquire an extra skill such as in-service training. 
This can be associated to probably that people who go for retraining have already acquired jobs. Thus they 
do not struggle to repay their loans. Across all the purposes of borrowing the loans the percentages of those 
who honoured the repayment was always more than those who defaulted. 
 

 
 

Fig. 4. Performance of the loan by purpose of the loan of Equity bank between 2006-2016 
 

Analysis of loans performance by the credit history showed that individuals who acquire loan for the first 
time showed defaults of 62.5% (Table 2). Those who had a loan before with the bank and had repaid fully 
showed 57.14 % of loan defaults. Those who had other loans and were still servicing them promptly showed 
a loan default of 31.89%. The individuals who had defaulted their loans in the past showed the best 
performance in repaying their loans. The general observation is that it was riskier to give a loan to a new 
borrower as compared to a borrower whose borrowing history was known. This agrees with Central Bank of 
Kenya’s annual report (2016) that the credit history of a borrower is a key determinant in creditworthiness. 
The history of how an individual has been servicing the existing or previous loans will determine if he is 
likely to default. This finding also concurs with a study of [40] (which showed that the credit history of an 
individual is vital to guarantee creditworthiness. 
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Table 2. Loan performance by credit history 
 

Credit History Preforming loans Non-performing loans 
 Frequency Percentage Frequency Percentage 
No credits are taken 15 37.5 25 62.5 
All credits at this bank paid duly 21 42.86 28 57.14 
Existing credits paid duly until now 361 68.11 169 31.89 
Delay in paying in the past 60 68.18 28 31.82 
Credits existing elsewhere 243 82.94 50 17.06 

 

Analysis of duration of employment showed that clients who have been employed for only one year showed 
the highest percentage of loan default (Fig. 5). This is because those who acquired a loan during early years 
of employment were unable to service the loan leading to defaults. Those who were unemployed have low 
financial power and this could lead to defaults. Those who have been employed for more than four years 
showed relatively less percentages in terms of defaults. This shows that employment increases the financial 
stamina of a person and thus increasing his ability to repay a loan. 
 

 
Fig. 5. Loan defaults per duration of employment for Equity Bank between 2006-2016 

 

In this study, females showed a poor performance in servicing their loans as compared to males (Fig. 6). One 
of the reasons why individuals default loans are divorce [41]. When a divorce occurs, females are the most 
affected as compared to men. This could be one of the reasons why the percentages of women who defaulted 
their loans were more than males. This is in line with studies [42,43] which found out that female borrowers 
tend to default more than male. This could be attributed to the way society depicts women in terms of 
property ownership and acquisition of wealth. Most financial decisions involving women are made by their 
husbands or their parents and this poses a risk to any amount of credit acquired.  
 

Analysis of loans performance using operation status of the current account showed that individuals whose 
current accounts mostly operated with no money showed higher percentages of loan defaults when compared 
to individuals whose current accounts operated with some money (Table 3). Individuals who did not have 
current accounts at the bank showed better performance in repaying their loans but still loan defaults existed. 
The general observation is that the ability to repay a loan is determined by the financial power of an 
individual.  
 

Table 3. Performance of loans by a current account at Equity Bank between 2006-2016 
 

Current account Preforming loans Non-performing loans 
Frequency Percentage Frequency Percentage 

< 0 139 50.73 135 49.27 
0 – 50000 164 60.97 105 39.03 
> 50000 49 77.78 14 22.22 
No current account 348 88.32 46 11.68 
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Fig. 6. Loan performance by gender for Equity Bank between 2006
 
Individuals living in urban areas are more likely to default a loan as compared to individuals 
areas (Fig. 7). Some of the reasons for loan defaults is the loss of employment or failed business 
people in urban areas earn their livelihood through formal employment or business and do not have an 
immediate back up in case they lose a job or a business fails 
cost of living is low. This could be one of the reasons why people in urban areas are more likely to be 
defaulters as compared to people in rural areas.
 
Individuals who acquired loans using an item of a high value such as real estate or a farm showed better 
performance in repaying their loans as compared to individuals who acquired loans without the security 
(Table 4). It can be argued that when a person borrows a loan from
the item placed as security can be confiscated by the institution. For this reason, if a person has used an item 
of high value as security he is likely to try by all means to repay the loan as compared to a person
nothing to lose after defaulting apart from being listed with credit research bureau.
 

Fig. 7. Loan performance by area of residence of loans from Equity Bank between 2006
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Table 4. Loan performance summary by security item at Equity Bank between 2006-2016 
 

Property Preforming loans Non-performing loans 
 Frequency Percentage Frequency Percentage 
Real estate/farm 222 78.72 60 21.28 
Savings/Insurance 161 69.4 71 30.6 
Car 230 69.28 102 30.72 
No Property 87 56.49 67 43.51 

 

4 Validation of Logistic Regression Model 
 
The performance of the model with both the train and the test data was shown using a learning curve (Fig. 
8). This was a plot of the train errors and the test errors against the sample size on the same axes. This plot 
showed that the quality of the model increased as the sample size increased. This is in agreement with a 
study carried out by [46]. He carried out research on the effects of size of the sample on the performance of 
generalised linear models. The research revealed that the increase in size of the sample improves the 
performance of the models. The best model was produced with a sample size of 700. This was the entire data 
set. It can also be seen that probably by increasing the sample size a better logistic regression model could 
have been produced. 
 

 
 

Fig. 8. Train errors Vs Test errors plot for the logistic model 
 

5 Conclusion 
 
In this study, logistic model was used for the analysis of individual loan defaults. This study was motivated 
by the increasing need to explain how individual loan defaults relates to different variables of interest in the 
Kenyan financial institutions as well as determine how to mitigate the menace of loan defaults. 
 

In order to achieve the objective of the study, the knowledge of machine learning was utilized and 
implemented for analysis of the data. The data was obtained from the equity bank of Kenya between 2006 - 
2016. The data was cleaned and missing values removed through seeding in R., then coded according to the 
variables for easy analysis. The logistic regression model was fitted using R-statistical software. During the 
analysis, the data was split into two, train data set and test data set then the probabilities of loan defaults 
from the train data were developed which enabled data visualization. This helped to tell if an individual is 
likely to default an individual loan when compared to the Z-score in relation to the variables. A plot for train 
errors and test errors was developed (Fig. 8). This was done in order to determine the effect of increasing the 
sample size of the study in relation to test errors. 
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